研究人员通常会在下游分析中遭遇DNA样本量有限或不足的问题。QIAGEN的全基因组扩增技术通过以包括单细胞在内的小量样本或珍贵样本扩增获得基因组DNA,解决此类难题。REPLI-g Kit能够准确地复制原始DNA样本,不会造成偏差,扩增后的DNA可以直接应用于广泛的遗传学分析。 什么是全基因组扩增(whole gemome amplification)? 基于PCR的WGA技术 基于PCR的WGA技术主要有两种:简并寡核苷酸PCR (DOP-PCR)技术(1)和扩增前引物延伸(PEP)技术(2)。这两种技术之间的主要区别在于PEP技术使用随机引物和低PCR退火温度,而DOP-PCR技术则使用半简并寡核苷酸(例如CGACTCGAGNNNNNNATGTGG)和更高的退火温度。两种方法中都使用了Taq DNA聚合酶,使得扩增长度限制在3 kb(平均片段长度为400–500 kb)以内,并且会在扩增序列中引入一些错误。不仅如此,有研究发现这些技术的基因组覆盖度不够完整,并会在扩增中产生偏向性——由于引物优先结合某些特定区域,造成DNA扩增产物中的一些序列相对增多。 多重置换扩增的WGA技术 REPLI-g使用了称为多重置换扩增(MDA)的恒温基因组扩增技术,该技术包含了随机六聚体与变性DNA的结合过程,以及使用Phi 29聚合酶在恒定温度下进行的链置换合成过程。每个置换链上添加引物后,形成分枝状的DNA结构网络。Phi 29聚合酶不会从基因组DNA模板上面解离下来,这使得生成的无偏差DNA片段可延伸至100 kb。该酶还具有3’端→5’端的外切酶校正活性,相比基于Taq DNA聚合酶的方法,能够提供高达1000倍的保真度(参见上述基于PCR的WGA技术)。Phi 29聚合酶由独特的REPLI-g优化缓冲液进行支撑,能够方便的克服如发卡环一类的二级结构困难,在扩增过程中避免滑脱、定制和聚合酶解离等现象的发生。这样无偏差的DNA片段能够合成至100 kb的长度。 | |
MDA技术与基于PCR的WGA方法相比的优势 传统的基因组DNA扩增方法包括费时的EBV转化细胞系建立过程,以及之后使用随机或简并寡核苷酸引物进行的PCR全基因组扩增步骤。为其他厂商所普遍采用的基于PCR的WGA法,也会产生非特异性的扩增干扰以及不完全的位点覆盖度。某些案例中可能生成短于1 kb长度的DNA片段,在很多后续应用中无法使用。通常情况下,由于使用了低保真度的Taq DNA聚合酶,使生成的DNA中包含了很高的碱基突变率,因此形成了容易出错的扩增,导致如单碱基对突变、STR缩短和扩张等不良后果的发生。REPLI-g则没有这些缺点,它能对整个基因组进行高度均一的扩增,反应过程中位点序列的偏差及突变率达到最小。 |
|
WGA技术的应用
|
TDLA是一种高精密仪器,可识别出气体混合物中的甲烷、水汽、二氧化碳等组分,同时测出这些组分的浓度,而且可达到很低的检测限。TDLA工业涉及分析化学、过程化学、过程工程、多元数据分析等多种学科。TDLA技术已应用于多种场合,如硫回收装置、炼油厂加热器、焚烧、排放监测、电弧炉、脱硝装置和各种用途的锅炉中的气体分析和天然气、温室气体、肥料(尿素)、清洁气体等气体分析。
这份报告从行业、应用和地理位置三个维度对TDLA的市场进行了分析。TDLA涉及的行业包括化工、电力、石油天然气、纸浆和造纸、化肥、水泥、金属和环境产业。TDLA在尾气、合成气、炼油厂燃料气、天然气、温室气体、火炬气、肥料挥发气体、肥料(尿素)、煤气、清洁气体、碱性氧气转炉气等气体检测和硫回收、炼油厂加热器、核能、焚烧、催化裂解装置、排放监测、电弧炉、脱硝装置、焦炉炭黑生产、锅炉等设备中相关气体分析中都有应用。目前应用地区覆盖北美、南美、欧洲、亚太地区及其他地区。
TDLA市场增长主要源于排放监测和焚烧监测的需求,集中在石油天然气、金属、水泥和电力行业。新兴经济体的发展需求是TDLA市场增长的重要机会。
TDLA的主要供应商有德国西门子、瑞士ABB、(德国)、梅特勒-托莱多、日本横河、英国Servomex、挪威NeoMonitors、瑞士Endress+Hauser集团、德国西克麦哈克等。